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A theory of thermal oscillations in liquid metals
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Thermal oscil lat ions have been found to occur during crystal  growing, thereby
introducing undesirable striations in the solid crystal produced. A reason for the
existence of such oscil lat ions is  given in this  paper,  and relevant  experiments
discussed.

1. Introduction
In the process of growing metal  and semi-conductor crystals  from a l iquid

melt ,  spontaneous oscil lat ions in the temperature of  the melt  have been found
to occur,  thereby giving undesirable propert ies to the solid crystal  produced
(Hurle 1967; Jakeman $ Hurle 1972). Experiments (Hurle 1966; Skafel  1972;
Hurle, Jakeman $ Johnson 1974) have shown that such thermal oscillations
occur in liquid metals when a horizontal temperature gradient is imposed, and
only occur when this gradient is above a certain value. This suggests an instability
of the basic state to disturbances of an osoillatory character.  Hart (1972) has
found such an instability for a basic state which is an exact solution of the
governing equat ions.  I t  is  suggested that  this  is  the same type of  instabi l i ty  as
is found in the experiments. The objectives of this paper are (i) to give a physical
description of the nature of the oscillations, (ii) to describe a method for finding
approximate st.ability  characterist ics and ( i i i )  to discuss the experiments in the
light of the available theory. The theory cannot explain all  the experimental
results .  However,  i t  is  fel t  that  an adequate explanation is  given of why  osci l la-
tions should occur.

In order to describe the basic state,  let  (CC,  y, z)  be a r ight-handed system of
co-ordinates such that  the z axis  points  vert ical ly upwards and the x axis  i s  in
the direction of the horizontal temperature gradient (2”  > 0). The horizontal
buoyancy gradient will generate vorticity leading to a shear V,, and advection by
the associated velocity field generates a vertical temperature gradient T,.  An
exact solution of the governing equations has velocity

(U(z),  0,  0)
and temperature T of the form

T = XT,+  O(x),

where Ts is  a constant,  and U and 0 sat isfy

(l-1)

(1.2)

vu, = agTz, x0,,  = UT,. (1.31,  (1.4)
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g is the acceleration due to gravity, a is the thermal expansion coeficient, v the 
kinematic viscosity and x the thermal diffusivity of the fluid. Thus U is a cubic 
in z and 0 a quintic, the coefficients depending on the boundary conditions 
applied a t  plane horizontal boundaries z = f ad. Hart (1972) considered the 
stability ofthis basic state for cases where the boundaries are (a) rigid conductors 
and ( b )  rigid insulators; and has given results for a large range of values of the 
Prandtl number 

For liquid metals, P is very small (e.g. 0.026 for mercury, 0.02 for gallium) and 
so only the results for very small P are relevant. For such values of P ,  the first 
form of instability to occur was a ‘transverse’ mode. This is not oscillatory in 
character and so will not be considered further except in a discussion of the 
experiments. The oscillatory or ‘ overstable ’ disturbances were longitudinal 
even modes (labelled L, E in Hart’s figures), ‘longitudinal ’ meaning disturbance 
motion independent of x and ‘even’ describing symmet’ry about z = 0. These 
are the type of modes which will be examined in this paper. The disturbance 
equations are given in $ 2, approximate solutions are found in $ 3  and the small-P 
limit discussed in $ 5  4 and 5. The experiments are then discussed in $ 6. 

P = V I X .  (1.5) 

2. The perturbation equations 
Consider a perturbation to the basic state defined by (1 .1)  and (1.2). As far 

as the perturbation equations are concerned, it is not necessary that (1.3) and 
(1.4) be satisfied by U and 0, i.e. that the basic state be an exact solution of the 
equations. The perturbation equations will apply as long as (1 .1)  and (1.2) give 
a sufficiently accurate approximation to the basic state, which could well be 
true near the centre of a cavity whose depth is small compared with its length. 

Let the perturbation velocity be (u, v, w) and the temperature perturbation 
be 8, where u, v, w and 8 are functions of y, z and t only, i.e. the perturbation is 
independent of x but varies in the vertical plane which is perpendicular to that 
of the basic flow, (The idea of considering this type of perturbation came from 
the measurements of Hurle et al. (1974, figure 12). The lines of constant phase 
tend to be parallel to the flow.) A stream function $ can be introduced to describe 
flow in this plane, with 

The three remaining equations are (a) the temperature equation 
(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

2, = -$z, w = $,. 

8, + uT, + $u 0, = x be, 

~t + $, V, = VAU, 

A$t = ago, + vA2$. 

A$ = $vy + $22. 

( b )  the x component of the momentum equation 

and (c) the equation for the x component A$ of vorticity, namely 

In all these equations, the operator A is defined by 



A theory of thermal oscillations in liquid metals 579 

These equations may now be reduced to a single equation for $. Equation (2.4) 
gives 0 in terms of $, and if this is substituted in the y derivative of (2.2), an 
expression for u in terms of $ is obtained, namely 

When this is substituted in the y derivative of (2.31, the result is 

Solutions of (2.7) may be found with the form 

1 ~ .  = egtsin ( l y )  &z), 

which, when substituted in (2.7), reduces it to an ordinary differential equation 
of order eight. The stability problem involves finding the eigenvalues CT for 
which the appropriate boundary conditions are satisfied. Instability occurs 
when there exists an eigenvalue CT with positive real part. 

The stability characteristics depend on two non-dimensional numbers, the 
Prandtl number P defined by (1.4) and a Rayleigh number 

A = agT,d4/vX (2.9) 

based on the horizontal temperature gradient Tx and depth d of fluid. The way 
these parameters enter the problem can be seen when (2.8) is put in non- 
dimensional form. Non-dimensional quantities are defined by 

(2.10) I Z* = z/d, I, = Id, CT, = CTd2(vX)-Q, 

a, = -d2&/XA, r, = @,/AT,. 

When (2.8) is substituted in (2.7) and use is made of (2.10), the result is 

(CT*-P~A*)~(A,-P~CT,)A,~+~~*A~[~~,~+P~(CT.*-~~A*)(~~~)] = 0, (2.11) 

where A, = d2/d.& - 1:. (2.12) 

Equation (2.11) is the governing equation of the problem. 

3. Approximate solutions of the stability problem 
Approximate solutions to (2.11) can be found by replacing 4, and 7, by constants 

G, and ?,, which can be regarded as appropriately weighted mean values of u, 
and 7,. Such an approach has been used in an unpublished report, by Faller 
(see Faller 1969). The agreement with the exact result will depend, to some 
extent, on the suitability of the weighting function used. At worst, the method 
can be regarded as a form of scale analysis which will show how CT depends 
on the given parameters in various limits, In  practice, the method gives results 
which agree with Hart’s numerical results and with experiments to within a 
factor of two. 

If as and r, are constant, (2.11) has solutions which are sinusoidal in z. A 
37-2 
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vertical scale is set by assuming that the dept'h d of fluid will be approximately 
half a wavelength, and hence the operator A, in (2.11) is replaced by 

(3 .1)  

( ~ * + P b k ~ ) ~ ( k ~ + P l ~ , )  k2+1:r12[ccz+(pbu*+pk2)r.] = 0. (3.2) 

(3.3) 

with ui + 0. Substituting in (3.2) and taking real and imaginary parts, one 
obtains a cubic equation for ur and an expression for u4 in terms of ur and the 
other parameters. The conditions for marginal instability are obtained by 
putting 0; = 0. They can be found directly from (3.2) by putting u* = iai in 
(3.2) and taking real and imaginary parts. Two expressions for uf result, namely 

A, = -n2-1: = -k2. 

Then (2.11) becomes an algebraic-equation 

For solutions with an oscillatory character, u* is complex, i.e. 

u* = ur + iui 

+ P(k8 + k2Z$ A 5 , )  
(1+2P)k8  k2 

(2 + P) k6 + Z$ A27, 
(3.4) - a? = - 

These expressions combine to give A = A ,  as the condition for marginal stability, 
where 

2(1+P)2k8 
= 12,[(1, - Tz( 1 + P) k2]. (3.5) 

Unstable solutions are found for A > A,, and stable ones for A < A,. Oscillatory 
instability is only possible when the right-hand side of (3.5) is positive, i.e. 

Tz( 1 + P) k2 < i,. (3.6) 

To obtain more definite expressions, the weighting fa,ctor cos2nz, was used 
for the solutions of (1.3) and (1.4). For the case of rigid conducting boundaries 
(U = 0 = 0 at  z = i d ) ,  this gives 

G~ = (2n)-2, ;r, = (24-4,  (3.7) 

while in the case of free conducting boundaries 

i, = (274-2 (1 + ;?, = (2n)-4 ( 1  + g+). (3.8) 

I n  either case (3.6) and (3.1) show that instability is only possible when P < 3. 
(The number 3 is, of course, only the approximate value given by the model.) 
For larger P, it can be seen from (3.5) that the stabilizing effect of the vertical 
temperature gradient becomes too great for instability to occur. 

For small P, the value of 1: that gives the smallest value of A,  in (3.5) corre- 
sponds, in both cases, to a wavelength h in the y direction and a frequency a, 
given by 

h = 3 . 7 4  ui = 22. (3.9) 

The corresponding value of A,  is 
A,  = 1030 (3.10) 
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for rigid conducting boundaries and 

A, = 240 (3.11) 

for free conducting boundaries. The results for rigid conducting boundaries may 
be compared with the exact values found by Hart (1972), namely h = 3.id, 
A, = 1700 and ( T ~  = 40. A11 the approximate values are within a factor of two. 

4. The small-P limit 
and r, and a fixed vertical 

wavenumber show that A, and (T are of order unity as P tends to zero. Assuming 
this to be true in the general case, the small-P limit can be investigated and 
a physical description of the mechanism responsible for the oscillations can be 
obtained. 

The results of the previous section for constant 

Suppose that, as P --f 0, $ -+ $o and CT* -f go. Then (2.11) formally gives 

( ~ f  A$ 4o + 1% A 2 ~ B $ o  = 0. (4.1) 

This limit is valid in an interior region, but cannot be uniformly valid over the 
whole domain for all boundary conditions since (4.1) is of fourth order whereas 
the full equation (2.1 1)  is of order eight. I n  order to find the physical meaning of 
this equation, and to see what boundary conditions are appropriate, one can 
look a t  the corresponding limiting forms of the original equations (2.2)-(2.4). 
These are 

uT, = xA8, (4.2) 

i.e. diffusion dominates in the heat equation but viscous effects are negligible. The 
boundary condition on momentum, therefore, is the inviscid one of no normal 

(4.5) 
flow, j.e. 

while the condition on temperature is 0 = 0 for the conducting case, i.e. by (4.4)) 

A*$o = 0. (4.6) 

A*$; = 0, (4.7) 

$0 = 0,  

Alternatively, in the insulating case, it is 8' = 0, i.e. 

where the prime denotes a derivative with respect to x * .  
For free conducting boundaries, $o satisfies the full viscous boundary con- 

ditions, and so is a uniformly valid first approximation to  the full solution. If 
(4.1) is multiplied by $o and integrated over the depth, there results 

B (T;S' (${2+212,$;a+1$$$)dz, = -Z$AzS aB$2dx,, (4.8) 
-Q -' 

showing that (T; must be negative, since as is positive over the entire depth in 
this case. A similar result may be obtained by multiplying (4.1) by and 
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Towards Towards Towrds T o w r d s  

Away 

(0 

FIQURE 1. Successive positions (thick line) of a line of particles undergoing oscillations. 
Their equilibrium position is z = 0 and the 1: axis points into the page. The fluid above 
z = 0 is moving towards the reader and towards the cold wall. The fluid below z = 0 is 
moving away from the reader. The signs of w and 8 are exactly the same as for an internal 
gravity wave, but the way the temperature perturbation 0 is determined is entirely dif- 
ferent. For zero Prandtl number, the motion is inviscid but heat diffuses instantaneously. 
Since z momentum is conserved the perturbation velocity u is positive, i.e. away from the 
cold wall, when the particle is elevated. Advection away from the cold wall produces 
a negative temperature perturbation. Since diffusion is instantaneous, the minimum 
value of 0 occurs when the particle elevation is a maximum, and a simple harmonic 
oscillation results. 

For small non-zero Prendtl number, diffusion is not quite instantaneous and the particle 
reaches its minimum temperature 8 little after it reaches its maximum elevation. This 
will lead to growth of the disturbance if the phase shift is sufficient to overcome the 
effects of viscous damping. The condition for this to be achieved is that the Rayleigh 
number A based on the horizontal temperature gradient T, and the depth d be above a 
certain value. 

(4 > 0,  = 0, e = 0. ( b )  w = 0,  > 0, e < 0. (c) < 0, = 0, e = 0. ( d )  = 0, 
< o,e  > 0. 

integrating. Equation (4.8) may be used to find a: by the Rayleigh-Ritz pro- 
cedure. +o can be expanded as a Fourier cosine eeries, since these functions satisfy 
the boundary conditions. A first approximation is obtained by putting 

$o = COS772*, 

which gives precisely the results given in 3 3 for the free-boundary case. This 
can be regarded as a justification of the procedure used in $3,  at least for the 
oase of free conducting boundaries. 

The physical nature of the oscillation can now be described with the help of 
(4.2)-(4.4). Figure 1 shows four stages in the oscillation. The line drawn repre- 
sents a line of particles whose equilibrium position is z = 0. The choice of axes 
is such that T, is positive and V, is negative, i.e. the fluid below the y axis is 
moving away from the reader and away from the cold wall, whereas the reverse 
is true above the y axis. The particle conserves its x momentum, so when it  is 
elevated its perturbation velocity is away from the reader and away from the 
cold wall. Thus it is cold relative to its surroundings, and since diffusion takes 
place instantaneously in the limit considered, the particle is coldest when at 
its maximum elevation. The restoring force is therefore a maximum at this 
point, and since the fluid is effectively inviscid, the oscillation is maintained. 
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The frequency of oscillation is of order 

where m is the effective vertical wavenumber. 
Physical arguments can also be used to see how the neglected effects will 

modify the oscillation. First, there is the effect of the finite diffusion time, so 
that the particle will not cool down instantaneously as i t  is elevated and will 
reach its minimum temperature a little after its maximum elevation. At zero 
displacement, the descending particle will still be slightly colder than its sur- 
roundings and so there is a force tending to increase the amplitude of the oscilla- 
tion. This effect is, therefore, destabilizing. On the other hand, there are two 
effects which tend to stabilize the motion, namely viscous dissipation and the 
presence of a stable vertical temperature gradient. Whether the oscillation will 
be self-excited or not therefore depends on which of these effects is most im- 
portant. It will be found that the destabilizing effects become more important 
when the Rayleigh number is above a certain value. 

5. Determination of marginal-stability conditions 
The first approximation for small P determines the frequency of oscillation, 

but does not determine whether the oscillation is stable or unstable. The con- 
dition for marginal stability depends on the next order of approximation, i.e. it 
depends on a balance between small effects. Determination of the next approxi- 
mation is most straightforward for the case of free conducting boundaries. In  
this case 

and, in the interior a t  least, 
c* = ao+P4cl+ ..., (5.1) 

@ = $o+PQ$l+..., ( 5 4  
where, by substitution in (2.11), $l satisfies 

g: A$ + Z$ A2az$1 + 2 c ~ ~ ( c ~  - A*) A: - c:A* $o + c0 1; A27, $o = 0. (5.3) 

a, is now determined by a solvability condition. Since the operator acting on 
$l in (5 .3)  is self-adjoint for free conducting boundaries, this condition is obtained 
by multiplying (5.3) by $o and integrating over the depth. This gives 

2CT1y ($;("+2z:$;2+z$$;)dz* 
-4 4 

-4 
= - 2 1  ($t2 + 31: ~2 + 31: $i2 + 1; $:) dx, 

-c:/' ($~2+Z$$~)d.z , -Z$A2/  Q r,$:dz*. (5.4) 

-4 -4 
The second term on the right-hand side is positive since cg is negative, and 
represents the destabilizing effect due to the finite diffusion time. The preceding 
term represents viscous dissipation and the succeeding term, the stabilizing 
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effect of the stable vertical temperature gradient. Approximate solutions can 
be found by using the functions used in determining u,, from (4.8) by the 
Rayleigh-Ritz procedure. If a cosine expansion is used, the first approximation 
obtained by substituting in (5.4) is that obtained already in $ 3  for the free 
condusting case. This is considered to justify, in this case, the procedure used 
in $ 3 ,  and to  demonstrate the possible existence of unstable oscillations in 
liquid metals. 

For rigid boundaries, the above expansion is not valid. In this case, @,, does 
not satisfy the full viscous boundary conditions, and so thin Stokes layers are 
required adjacent to  the boundaries, in order to  satisfy the no-slip conditions. 
These layers have thickness (P/ui)i)l. According to Hart’s (1972) results, this 
thickness is & of the depth for P = 0.026. The existence of the Stokes layer 
increases viscous dissipation by a factor of order P-4, so to obtain marginal 
instability, A has to be increased by a factor of order P-4 in order to increase the 
destabilizing effect of the finite diffusion time. This weak dependence on P is 
not detectable in Hart’s results. The matter will not be pursued further in this 
paper, as the emphasis is on the nature of the phenomenon rather than on de- 
tailed results. 

6. Discussion of experimental results 
The experimental results of Skafel (1972) and Hurle et al. (1974) will now be 

discussed. The latter authors studied convection in a rectangular box containing 
molten gallium, the convection being driven by maintaining a temperature dif- 
ference between the two ends. Skafel used mercury as the working fluid and 
studied convection both in the rectangular geometry and in a,n annulus with 
a temperature difference maintained between the inner and outer cylindrical 
surfaces. In  Skafel’s apparatus, the lower boundary was insulating and the 
upper surface was usually exposed to the air. I n  each case measurements were 
made of the mean temperature field and of thermal oscillations, and the smallest 
temperature difference for which oscillations occurred was ascertained for dif- 
ferent geometrical parameters. 

I n  the box geometry, no evidence was given which would indicate the presence 
of transverse modes (see Hart 1972) resulting from shear-flow instability. One 
concludes either that the side walls of the box stabilized this form of disturbance, 
or that the measurement techniques were not sensitive to  its presence. The 
measured temperature fields indicated a single-cell circulation whereas trans- 
verse modes, if present, would perha.ps result in secondary circulations. I n  the 
annular configuration, there are no side walls to  inhibit the shear-flow instability. 
I n  this case, Skafel’s measurements of the mean temperature field looked much 
the same as those for the box geometry, i.e. they indicated a single-cell circula- 
tion. However, he reported (Skafel 1972, p. 18) that  “small amplitude fluctua- 
tions with a wide frequency bandwidth were present, the shapes of which were 
not consistent from sample to sample ”. Thermal oscillations, when they occurred, 
stood out clearly above this background noise. The small amplitude fluctuations 
may have been the result of shear-flow instability. However they appear to have 
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been rather unimportant, and did not prevent the thermal oscillations from 
occurring. 

Let us consider the results for the annular configuration first. Suppose that 
the radii of the outer and inner cylindrical walls are R, and Ri respectively. 
Suppose that AT is the temperature difference between the two cylindrical walls 
and d the depth of fluid. Then the parameters on which the nature of the con- 
vection depends are the Prandtl number P, the radius ratio 

the aspect ratio 
R = R,/Ri, 

h = d/L, 

where L = R, - R,, and the difference Rayleigh number 

A ,  = ~g4Td~IvxL. (6.3) 

The basic steady-state solution in this geometry is not known. For small P 
and small A ,  the temperature field will be determined purely by conduction, 
so that in the conducting-boundary case the horizontal temperature gradient 
would be approximately constant if the radius ratio were not too large. For small 
aspect ratio, the flow away from the ends would be approximately the cubic 
velocity profile satisfying (1.3). 

However, the oscillatory instability does not arise until the Rayleigh number 
is of order 1000, by which time convective effects have become important in 
determining the temperature field. Measurements show the horizontal tempera- 
ture gradient to  be larger than ATIL near the end walls, but t o  be approxi- 
mately linear over the central portion with a value smaller than 4TIL. This 
allows one to determine a gradient Rayleigh number 

A ,  = ~gT,d~/vx (6.4) 

based on the observed horizontal temperature gradient T, in the central part of 
the cavity. 

The vertical temperature gradient a t  the onset of thermal oscillations was also 
measured. For small depths of fluid this was negative because of surface cooling. 
For larger depths, the measured value T! given is the average over the region in 
which T, was positive. In  table 1, the measured T,  is compared with the value 
given by (3.7) (using the measured T, and Ag) .  T,  is seen to have the order of 
magnitude given by (3.7), but to vary somewhat in its numerical value. For that 
reason, critical conditions were calculated from (3.4) and (3.5) for a variety of 
values of T,  and the results are shown in table 2. Since .I, is unknown, this was 
kept fixed a t  the value given by (3.7). 

The theory discussed in earlier sections cannot be expected to agree with 
experiment in any precise way because of lack of knowledge of the basic flow, 
approximations made in calculating stability characteristics, and the neglect of 
end effects. However it is of interest to  calculate experimental values of the 
Rayleigh number and of the non-dimensional frequency wi to see if they have 
values comparable with those predicted by the theory available. Table 1 shows 
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RoIRi d l L  A d  ui ( 2 ~ ) ~  7. A ,  ui/uta hld 
1.38 0.30 610 10 0.9 410 0.5 - 

0.40 890 15 2.0 410 0.6 
0.47 1330 21 0.7 900 1 .o 2.3 
0.50 1540 23 1.2 730 1.0 - 
0.55 2310 32 1.4 920 1.3 
0.60 3910 40 
0.70 4850 44 
0.80 6180 44 

- 

- 
- - - - 
- - - - 
- - - - 

- 1-73 0.175 660 10 - 2.2 400 0.7 
’ 0.20 720 14 0.5 360 0.7 4.0 

0.25 860 19 2.6 520 0.6 - 
0.30 1050 20 0.5 560 1.0 

0.15 960 14 - 0.4 530 0.8 - 
0.175 1220 18 1.1 800 0.8 
0.2 1490 20 0.9 1130 0.9 2.8 
0.25 2420 29 

- 

- - - 1.6 560 2.49 0.125 850 - 

- 

- - - - 
TABLE 1. Results for marginal stability for mercury (P = 0.026) in an annulus (from 
Skafel 1972). R, is the radius of the outer cylinder and Ri the radius of the inner cylinder. 
L = R, - Ri and d is the depth. A d  is the difference Rayleigh number based on ATIL and 
the depth. ui = d*o(vX) -&,  where o is the angular frequency. A,, and ui are taken from 
Skafel’s table 1. A, is the gradient Rayleigh number based on the observed gradient T, 
at the centre of the cavity (from Skafel’s figures 9-11). T, is a non-dimensional vertical 
temperature gradient, depending on the observed vertical gradient and observed hori- 
zontal gradient a t  the centre of the cavity. uta is the theoretical frequency for the observed 
T= according to table 2. h is the observed wavelength in the azimuthal direction (see text). 
Values of A, and h can be compared with those given in table 2. 

( 2q4 7, A, Ui Ald 
- 3  600 14 3.2 
-2  650 15 3.2 
-1 730 16 3.3 

0 850 19 3.5 
1 1030 22 3.7 
2 1340 27 4.3 
3 2490 39 5.8 

TABLE 2. Computed characteristics of the first marginally stable disturbance for different 
values of TP. A ,  is the minimum value of A ,  given by (3.5) and h/d corresponds to the value 
of I ,  which makes A,  a minimum. ui is then calculated from (3.4). 

measured critical values of A ,  and ui for Skafel’s experiments, and values of A ,  
and hld  where available. The values of A ,  and ud were calculated from Skafel’s 
table 1, and the values of h ld  from the text. The value of% was taken from table 3 
of Skafel and the value of T, from graphs of T as a function of x. 

It will be noticed that A ,  increases with d l L  and varies by a factor of ten over 
the experimental range. However muoh of this change is due to changes in the 
basic state with d l L .  First, the horizontal temperature gradient changes, and 
if measured values of T, are used, it is found that A, changes by a much smaller 
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wld d l L  4 3  g* (2d47, A ,  C i b t h  

Mercury 

6.4 0.15 780 9 -2.7 420 0-7 
4.8 0.20 570 10 1.8 360 0.4 
3.8 0.25 950 13 1.2 590 0.6 
3.2 0.30 1220 16 1.9 650 0.6 
2.7 0.35 2150 24 2.4 900 0.8 
1.9 0.40 7320 79 1.3 2000 3.4 

1-1 0.35 
1.1 0-40 
1.1 0.52 
2.0 0.21 
1.5 0.29 
1.0 0.45 
1.1 0.40 
0.8 0.40 
0.5 0.40 

3500 
4600 
9100 

500 
1400 
7000 
4600 
3800 
- 

Gallium 

55 
65 
96 
16 
35 
83 
65 
55 

184 

TABLE 3. Results for marginal stability for mercury and for molten gallium for a rec- 
tangular cavity of width 20 and length L. d is the depth of fluid. The results for mercury 
are taken from table 1 and figure 12 of Skafel(1972). The results for gallium are taken from 
figures 5-8 and 33.1.3 of Hurle et al. (1974). 

factor. Second, it is observed that the vertical temperature gradient also changes. 
The changes in A, observed are of the same extent as is predicted in table 2 
for the observed range of values of 3. Considering the nature of the theory used 
for comparison, the agreement is remarkable and appears to confirm that the 
basic ideas developed in earlier sections are applicable to the experiments. 

Experimental results for the box geometry are shown in table 3. The para- 
meters in this case are P, A,, h and the ratio w/d of width to depth. The results 
for mercury, where w/d was usually large, agree with theory just as well as the 
results for the annulus, except for the smallest value of w/d, i.e. 1-9. The results 
for gallium are all for w/d < 2,  making the width less than half of optimum 
wavelength in all but one case. If it  is assumed that the disturbance wavelength 
is half the width instead of the optimum value, t,hen (3.4), (3.5) and (3.7) give 
A ,  = 1700 and gi = 42 for w/d = 1 and A,  = 2200 and si = 55 for wld = 0.8. 
Both A,  and si become infinite when w/d = 0.58, and according to 3 3, oscillations 
are not possible for smaller values of w/d. This explains the trend in the results 
for variations in w/d, but cannot explain the systematic dependence on the 
length of the cavity, since the theoretical results are independent of the length. 
This dependence could be due to changes in the basic state with length, or to 
changes in the perturbation, or to a combination of these, and it is beyond the 
scope of this paper to investigate this effect. 



688 A .  E .  Gill 

7. Conclusions 
The temperature oscillations found in the experiments for annular geomet,ry 

and for wide rectangular cavities have the physical characteristics described 
in $4,  and arise spontaneously for the reasons stated in 3 4. The oscillations are 
primarily longitudinal and may be esplained in terms of a diffusion-dominated 
inviscid model. The buoyancy restoring force results from horizontal advection 
in the presence of a mean horizontal temperature gradient, and uould be in 
phase with particle elevations if diffusion were instantaneous. The phase shift 
resulting from the finite diffusion time can make the oscillation grow, provided 
that the Rayleigh number, as defined in 9 2, is large enough for viscous dissipation 
t o  be overcome. The experiments in narrow cavities show the oscillations t o  be 
modified by the geometrical constraints. Presumably the reason for their 
existence is basically the same, but considerable further effort would be needed 
to  determine their characteristics. 
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REFERENCES 

FALLER, A. J. 1969 Bull. Am. Phys. Soc. 14, 1093. 
HART, J. E. 1972 J. A m o s .  Sci. 29, 687. 
HURLE, D. T. J. 1966 Phil. Mag. 13, 305. 
HURLE, D. T. J. 1967 Proc. Int. CmJ. Crystal Growth, p. 659. Pergamon. 
HURLE, D. T. J., JAKEMAN, E. & JOHNSON, C. P. 1974 J. Fluid Mech. 64, 565. 
JAKEMAN, E. &, HURLE, D. T. J. 1972 Rev. Phys. in Tech. 3, 3. 
SKAFEL, M. G. 1972 Ph.D. thesis, University of Cambridge. 


